Variants of the Andrews - Gordon

نویسندگان

  • A. BERKOVICH
  • P. PAULE
چکیده

The object of this paper is to propose and prove a new generalization of the Andrews-Gordon Identities, extending a recent result of Garrett, Ismail and Stanton. We also give a combinatorial discussion of the finite form of their result which appeared in the work of Andrews, Knopfmacher, and Paule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variants of the Andrews-gordon Identities

The object of this paper is to propose and prove a new generalization of the Andrews-Gordon Identities, extending a recent result of Garrett, Ismail and Stanton. We also give a combinatorial discussion of the finite form of their result which appeared in the work of Andrews, Knopfmacher, and Paule.

متن کامل

LATTICE PATHS, q-MULTINOMIALS AND TWO VARIANTS OF THE ANDREWS-GORDON IDENTITIES

A few years ago Foda, Quano, Kirillov and Warnaar proposed and proved various finite analogs of the celebrated Andrews-Gordon identities. In this paper we use these polynomial identities along with the combinatorial techniques introduced in our recent paper to derive Garrett, Ismail, Stanton type formulas for two variants of the Andrews-Gordon identities. 1. Background and the first variant of ...

متن کامل

Binomial Andrews-gordon-bressoud Identities

Binomial versions of the Andrews-Gordon-Bressoud identities are given.

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001